客服电话  0411-82288886  82288887


公司邮箱:

dl_guoye@163.com

致力于工业智能化系统软硬件开发

公司关注安全领域前沿技术,每年投入大量资金进行技术更新,通过与东北大学、大连理工大学等高校联合,促进相关科技成果转化为实际生产力。

Copyright © 2019 大连国业工程技术有限公司  

辽ICP备17013742号  |  网站建设:中企动力  大连


公司电话:
0411-82288886   82288887


公司地址:辽宁省大连高新技术产业园区火炬

                 路56A号13层1302号

新闻中心

品质为先  诚信为本  精益求精  共同发展

>
>
新闻中心
新闻中心
行业资讯
2020/01/07
能源是一个国家经济社会发展的基石,是保障国家安全的命脉。人类社会的发展进步,对能源供给、能源结构、能源利用模式提出了新的要求。尤其是进入新世纪以来,化石能源短缺、环境污染严重和全球气候变化等问题日益突出,使得规模化清洁能源电力传输、能源供需广域平衡需求日益强烈。  面对全球能源安全、环境污染和气候变化的严峻挑战,国家电网公司提出依托特高压交流、直流和智能电网技术,发展“全球能源互联网”的重大战略,将能源放在全球经济、社会、环境大格局下统筹发展,统筹全球能源资源开发、配置和利用,实施清洁替代、电能替代,建立以清洁能源为主导的新型全球能源开发、配置和利用体系,能够极大促进可再生能源的开发和消纳,将“一极一道”、各洲各国大型能源基地及各类分布式电源融为一体,增进国际区域间合作,促进世界和平发展,推动世界能源安全、清洁、高效、可持续发展。  全球能源互联网对直流输电技术的重大需求  大容量电能输送与交换将是未来跨洲与跨国电网互联的主要特点之一。根据需求分析,预计2050年,通过北极通道送出的电量规模可达3万亿千瓦时/年,赤道地区电量外送可达9万亿千瓦时/年,合计输送电量占全球用电量需求的16%。同时,跨洲与跨国输电通道一般长达数千公里,北极地区的喀拉海风电基地到中国华北地区的距离为4400千米左右;白令海峡风电基地到中国华北、日本和韩国的输电距离在5000千米左右,而到美国西部负荷中心的距离也有4000千米左右。由此可见,发展输送距离更远、输电容量更大、输电效率更高的输电技术是全球能源互联网的必然趋势。  特高压直流输电技术(UHVDC)具有输送距离远、输送容量大、损耗低、换流站占地面积小、输电走廊小等特点,特别对于远距离大容量的电量输送,具有显著的优势。在构建全球能源互联电网的过程中,特高压直流输电将主要用于大型能源基地超远距离、超大容量电力外送和跨国、跨洲骨干通道建设。目前中国的特高压交直流工程最大输电距离超过2000公里、输电容量达到800万千瓦。随着±1100千伏特高压直流输电技术的全面突破,输电距离将超过5000公里,输电容量达到1200万千瓦。研究结果表明,采用±1100千伏特高压直流输电,不计跨国关税,即使考虑较高的线路与换流站投资造价水平,送、受端间开发成本差达到每千瓦时0.042美元,经济输电距离即可达到5000公里。这个成本已经可以支撑全球各个大型清洁能源基地的远距离经济输电需求。  清洁替代是全球能源互联网一个重要理念。至2013年,全球风电、光伏装机容量分别为3.2亿和1.4亿千瓦,约占发电总装机容量的5.6%和2.5%;预计到2020年,风电、光伏累计装机将达到7.0亿千瓦和4.9亿千瓦。但与传统水电和煤电不同,风电、光伏等能源发电具有间歇性、波动性、随机性和不可储存性等特点,风电出力特性则呈现明显的反调峰特性,其大规模接入将对电网的接纳水平、接纳手段带来重大挑战。  柔性直流输电技术(VSC-HVDC)可提高风电等清洁能源的并网效率,缓解电压波动对电网造成的冲击,尤其是对于偏远的陆地以及远海风电场来说,具有显著的技术优势,是未来大规模清洁能源基地接入电网的重要技术手段。而基于柔性直流的直流电网技术,能够在大范围内平抑清洁能源发电的波动性和随机性,在电力的输送和分配等领域,正受到越来越多的关注。随着技术的不断创新与成熟,未来有望成为全球能源互联网骨干网架的关键技术之一。  世界范围内电网规划及直流工程建设情况  从全球能源资源以及负荷中心的实际分布情况来看,要实现能源资源尤其是可再生能源资源的合理高效利用和消纳,需要建设大量特高压直流输电工程以实现大规模电能的远距离输送。  譬喻,在我国约80%的煤炭资源和70%的清洁能源都集中在西部和北部地区,而作为用电负荷中心的东中部地区能源资源稀缺。  从世界清洁能源资源分布来看,北极圈及其周边地区(“一极”)风能资源和赤道及附近地区(“一道”)太阳能资源十分丰富。集中开发北极风能和赤道太阳能资源,通过特高压等输电技术送至各大洲负荷中心,与各洲大型能源基地和分布式电源相互支撑,提供更安全、更可靠的清洁能源供应,将是未来世界能源发展的重要方向。  到现在为止,全球范围内已经投运和在建的±800kV及以上电压等级特高压直流输电工程有14个。根据规划预测,在未来10-15年内,每年将有2-3条特高压直流输电线路开工建设,工程直接投资资金500至1000亿元。  柔性直流技术的快速进步,推动了其在风电并网、电网互联等场合的广泛应用,而市场的发展又反过来推动了技术水平的提升。从目前国内外应用需求上看,未来柔性直流技术的主要发展方向包括:高压大容量柔性直流输电技术以及长距离架空线柔性直流输电技术等。  2008年11月,欧盟各国正式推出了超级电网计划,计划以高压大容量柔性直流输电技术为基础,建成连接欧洲、北非及中东的多端直流输电网络。超级电网将北海和波罗的海海域的风力发电,北非和中东太阳能发电连接在一起,实现多电源供电,并以多落点形式向欧洲大陆供电,从而保证了欧洲电网对可再生能源具备良好的接纳能力。  2010年起,国际大电网会议(CIGRE)和欧洲电工标准化委员会(EuropeanCommitteeforElectromechnicalStandardization,CENELEC)都成立了专门工作组针对超级电网技术开展了一系列研究工作。2011年,CIGRE成立了B4-52“直流电网可行性研究”工作组,从多个方面讨论了建设直流电网是否可行。并相继成立了B4-56至B4-60,B4-65等6个工作组,分别在直流电网规划、直流换流器模型、拓扑、潮流控制、控制保护、可靠性和电压等级等方面开展研究工作。同时CENELEC工作组也开展了直流电网的前期研究工作。  先进直流输电技术是构建未来全球能源互联网的重要基础。其中,特高压直流输电技术将是解决跨国、跨洲等远距离大容量电能输送问题的主要解决方案,强交强直的交直流互联电网将成为未来全球能源互联骨干架的主要形态。柔性直流输电技术、直流电网技术的不断完善与大规模发展,将对大规模区域性新能源接入与送出,以及未来电网形态带来深远的影响和深刻的变革。
2019/05/15
无线测温只是将原来的有线测温用无线来传输。优势是1测温预处理靠近测温点。同时釆用数字化。抗干扰能力强。2测温点不受线路限制。3但需要解决电源供电问题。其次距离上受无线传输距离的限制。4无线传输会受到环境障碍阻挡及反射等影响。
2019/03/27
大连国业工程技术有限公司成立于2015年,坐落在美丽的滨海城市大连,是一家以技术创新为先导,专门从事高炉炉缸多维侵蚀监测智能分析专家系统、无线测温测控装置研发生产的高新技术企业。公司办公占地面积1490平方米,博士生导师、教授2名,博士8名,高级工程师18人,下设市场部、技术部、生产部、财务部、经营部等部门,员工总数达200余人。公司具有一支经验丰富的产品研发与技术支持团队,有一整套的高科技检验设
2019/02/28
一、监测电网中高压电器设备易发热部件:1.10KV、35KV高压开关柜的动静触头及柜内各种接点温度的在线监测;2.地下电缆沟内的高压电缆接头及其他高压易发热部位温度的在线监测;3.变电站主变温度在线监测;4.发电厂变电设备和电缆沟内电缆接头温度的在线监测二、粮食系统中储粮仓库的应用,大量粮食在仓库中堆积时间长后,由于粮食本身的特性,会在内部产生大量的热量导致粮食变质等问题,因此在粮食内部安放无线测
2019/02/28
传统测温方式面临的问题1.常规测温方式常规的热电偶、热电阻、半导体温度传感器等测温方式,需要金属导线传输信号,绝缘性能不能保证。2.与光纤测温的比较光纤温度传感器采用光导纤维传输温度信号,光导纤维具有优异的绝缘性能,能够隔离开关柜内的高压,因此光纤温度传感器能够直接安装到开关柜内的高压触点上,准确测量高压触点的运行温度,实现开关柜触点运行温度的在线监测。然而,光纤具有易折,易断、不耐高温等特性。积
2019/02/28
(一)继电保护技术的智能化运用特性增强现代化的电力管理越来越体现了智能化的控制管理模式,具有一定的人工智能化的特征。这些特征,一方面使得电力系统在管理上减少了不必要的资源浪费;另一方面为其他各项技术的运用提供了广阔的技术空间。正是在这样的技术背景下,继电保护技术出现了一定的人工智能化,使得保护装置在设计上更具有合理性和科学性。这些智能化的信息特征使得继电保护技术在发展的过程中逐渐地进入了自动化的发展进程。目前,在我国主要大城市供电公司的继电保护设备中已采用了模拟人工神经网络(ANN)来进行对用电的保护。因此,进一步推进了继电保护技术智能化的发展前景。据现有的资料介绍,在输电过程中出现的短路现象一般有几十种,如果出现这样的情况用人工进行排除,至少需要12小时以上。但若是采用上述的神经网络继电保护方法,可通过采集的数据样本对发生故障进行检测,从而能在半小时之内得出故障出现的原因,大大缩短了维修时间。这些人工智能方法通过计算机辅助体统的帮助运用,可使得电力运输效率大大加强。(二)继电保护技术的网络化更新发展显着继电技术的运用离不开计算机网络的支持。这种网络化的技术,不仅给继电技术提供了可操作检查的直观空间范围,也给其发展更新提供了更为广泛的动力支持和保障。这也正是继电技术开放性发展的必然要求。继电保护的主要功能在于保护电力系统的安全稳定,而这种保护离不开计算机网络的数据模拟生成系统,需要依据计算机通过数据采集和分析来检测故障存在的原因,进而发出警报。这些网络化的发展,一方面,能够通过数据的的采集和模拟生成,综合分析可能出现的各种故障;另一方面,在显示故障的同时,能够准确地反映出故障的缘由、位置的情况,便于工作人员能够采取有效的解决策略。例如,现在的各种环保节能发电厂就是采用了该种装置,通过总调度室计算机监控,不仅能够知晓现有线路的运行前那个框,还能够对各条线路出现的短路等现象作出判断,以便维护人员能够进行及时正常地维修。(三)继电保护技术的自适应性发展迅猛继电保护技术的自适应性也是值得关注的方面。我们知道自适应控制技术在继电保护中的应用具有如下的作用:1)使得继电保护更具有一种适应性,能够适应多种故障的检测;(2)有效延长保护时间,能够使得电气设备产生更长的使用寿命;(3)能够提高经济效率,即这种保护能够针对用电过程中出现的问题进行排除,不仅减少了人工操作的麻烦,还能够节省成本。当前电力系统在发展过程中出现的各种问题,除了需要一定的人工操作之外,采用继电保护技术的自适应性技术,一方面,能够真正发挥继电保护的“保护”功能,使得人们的生产生活得以顺利地开展,满足人们的发展需要;另一方面,能够使得这种适应性能面对各种形势的变化发展,******限度地提高电力设备的使用寿命,以减少故障的发生。这种适应性应该离不开计算机网络环境的支持。因此,就更具有广泛的适应性能。
2019/02/28
1、型号由两部分组成,前一部分用汉语拼音字母表示电力变压器的类别,结构特征和用途,后一部分用数字表示变压器的容量和高压绕组的电压(KV)等级。D 单相 S 三相 F 风冷式 W 水冷式 P 强迫油循环 O 自耦  Z 有载调压 D 强迫油导向循环2、额定容量Se:在额定工作条件下,变压器输出能力的保证值,单位为KVA。对双绕组变压器,是指每个绕组的容量;对三绕组变压器,是指三个绕组中容量******一个绕组的容量。3、额定电压Ue:即变压器各绕组在空载时额定分接头上的电压保证值,单位为KV。三相变压器的额定电压指的是线电压。4、额定电流I1e和I2e:变压器的额定容量除以各绕组的额定电压所计算出来的线电流值,单位为A,即单相变压器 I1e=Se/U1e,I2e=Se/U2e三相变压器 I1e=Se/√3U1e,I2e=Se/√3U2e5、阻抗电压UD*:阻抗电压就是将变压器一侧绕组接成短路,当短路电流等于额定电流时在另一次侧绕组上所加的电压,并用额定电压的百分数表示,即UD*=UD/Ue*100%UD*用******值表示的阻抗电压,也称短路电压,它表示变压器一、二次侧绕组的电流为额定值时,在变压器内部阻抗上所引起的总压降6、接线组别:它表示变压器一、二次绕组的接线组合方式,即表示变压器一、二次电压或电流的相位关系对于三相变压器,其一、二次侧都有三个绕组,他们都可以接成星形或三角形,其中YN,d11联接组主要应用在高压输电线路上。高压侧中性点可以直接接地或通过阻抗接地。此联接组通常用在容量较大,电压较高的变压器上。7、空载电流I0:二次侧开路,一次侧加额定电压时流入变压器的电流称空载电流,用额定电流的百分数来表示。8、空载损耗P0:二次绕组开路,一次侧加额定电压时流入变压器所消耗的功率,称为空载损耗。空载损耗主要是铁芯的磁滞和涡流引起的,空载电流所引起的铜损可以忽略不计。9、短路损耗:二次绕组短路,一次绕组通以额定电流时变压器所吸取的功率叫短路损耗。它主要由一、二次侧绕组的电阻引起的,铁芯中损耗较小,可忽略不计。10、容许温升:在额定负载下,变压器各部位的允许温升。